Mining Precise-positioning Episode Rules from Event Sequences

Xiang Ao¹, Ping Luo¹, Jin Wang², Fuzhen Zhuang¹, Qing He¹

Institute of Computing Technology, CAS, China¹ University of California at Los Angeles, USA²

MOTIVATION

Traditional Episode Rule

Given a frequent episode \(\alpha \), a traditional episode rule in the form of \(lhs \rightarrow rhs \) is generated straightforwardly: The antecedent \(lhs \) is the prefix of \(\alpha \) and the consequent \(rhs \) is the last event in \(\alpha \), if its confidence is larger than a user-specified threshold.

![Image of traditional episode rule example](image)

From Fig.1, \(<D,A> \rightarrow \) is a traditional episode rule which indicates it is within 2 time intervals after the occurrence of \(<D,A> \) that \(B \) will occur (with 100% confidence).

Limitation of Traditional Episode Rule

Example: In stock investment application, we can map price change ratios to events and use candlestick charts to represent events. Red bars denote price increase of a stock, and green bars denote prices decrease.

- The episode rule \(<D,A> \rightarrow \) predicts correct in the following two cases, however we will lose money in Case 2 if we long the stock after we observed the antecedent of the rule.

![Image of traditional episode rule limitation](image)

Precise-positioning Episode Rule (PER)

We define precise-positioning episode rule in the form of:

\[
\Gamma = \alpha \xrightarrow{\Delta t} \beta
\]

- \(\alpha \): a traditional episode, as the antecedent;
- \(\beta \): a fixed-gap episode, as the consequent;
- \(\Delta t \): the time constraint between the antecedent and the consequent.

![Image of precise-positioning episode rule](image)

Mining ALGORITHM & EFFICIENCY

1. **MIP-ENUM Algorithm**

The basic idea of MIP-ENUM is to enumerate PER candidates by concatenating discovered traditional episode with fixed-gap episode and subsequently filter the invalid ones according their confidence values.

![Image of MIP-ENUM algorithm](image)

2. **MIP-TRIE Algorithm**

Data structure: PER-trie stores valid PER compactly.

Algorithm: MIP-TRIE(DFS) and MIP-TRIE(PRU).

- We use PER-trie to store all valid PER given an antecedent \(\alpha \) and propose two algorithms to build complete PER-trie.
 - MIP-TRIE(DFS) expands the PER-trie by a recursively depth first search manner.
 - MIP-TRIE(PRU) adopts an improved traverse strategy with pruning technique.

![Image of MIP-TRIE algorithm](image)

Efficiency Comparisons

Dataset: Retail -- http://fimi.cs.helsinki.fi/data/

Observations: 1. MIP-TRIE(PRU) outperforms MIP-TRIE(DFS) and MIP-ENUM algorithm; 2. MIP-TRIE algorithms significantly outperform MIP-ENUM.

EFFECTIVENESS of PER

DATASET: 150 related industry sector pairs of China stock market from Jan. 1, 2010 to Aug. 29, 2014.

EVT SEQ. CONSTRUCTION: UP (if the price increases) and DN (otherwise) for each industry sector.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-UP</td>
<td>B-DN</td>
<td>B-DN</td>
<td>B-DN</td>
<td>B-UP</td>
<td>B-UP</td>
<td>B-UP</td>
<td>B-DN</td>
<td>B-UP</td>
<td>B-UP</td>
</tr>
</tbody>
</table>

Fig.3 The example stock industry sector event sequence.

- A and B denote stock industry sectors.

SETTINGS: We use first 4-year sequence as the training set to mine PER on each sequence and degrade PER whose \(\Delta t = 5 \) to traditional episode rule (denoted as TDR), then test prediction ability of them on the rest.

COMPARISON: For PER, we trade strictly according to the rule; for TDR, we trade after antecedent occurs and close out either consequent appears or the maximal occurrence window for consequent reaches.

MEASURE: We close out when the float loss exceeds a stop-loss threshold during the holdings by TDR. We compute the return of holdings and visualize the winning rate of PER under different stop-loss thresholds.

VENUE & CONTACT INFORMATION

The 33rd IEEE International Conference on Data Engineering, San Diego, California, USA, April 19-22, 2017.

Email: [ao.xiang, luop]@ict.ac.cn, jinwang@cs.ucla.edu, [zhuangfz, heq]@ics.ict.ac.cn

Homepage of MLDM Group, ICT, CAS: http://mldm.ict.ac.cn

Xiang’s personal homepage: http://mldm.ict.ac.cn/MLDM/~aox

Public account on Wechat: